Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Biochem Biophys Res Commun ; 627: 111-121, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36030652

RESUMO

Characterized by compensatory hyperplasia dependent on hepatocyte proliferation, the liver will initiate regeneration after partial hepatectomy (PH) and acute or chronic injuries. A variety of genes and noncoding RNAs play pivotal roles in these cell proliferation and growth processes. However, it is still unclear how competition endogenous RNAs (ceRNAs) modulate cellular activities during each phase of liver regeneration, and the specific mechanisms of posttranscriptional gene expression regulation in hepatocyte proliferation remain to be elucidated. To investigate the mechanism of liver regeneration through RNA-seq profiling and to determine the role of miR-34b-5p/PDK1 on hepatocyte proliferation, we established a 2/3 PH mouse model for whole transcriptome profiling based on high-throughput sequencing techniques. We subsequently constructed a lncRNA-miRNA-mRNA ceRNA regulatory network through integrative analyses of RNA interactions. Finally, plasmid transfection in NCTC 1469 cells, dual luciferase reporter gene assay, quantitative real-time PCR, western blotting, Cell Counting Kit-8, and EdU-DNA synthesis cell proliferation assay were used to demonstrate the role of the miR-34b-5p/PDK1 axis in hepatocyte proliferation in vitro. A total of 1443 mRNAs (962 up, 481 down), 48 miRNAs (35 up, 13 down), and 1955 lncRNAs (986 up, 969 down) were identified as significantly differentially expressed. We then successfully constructed a ceRNA regulatory network consisting of 7 lncRNAs, 15 miRNAs, and 347 mRNAs based on the predicted inverse interactions among ceRNAs. Additionally, miR-34b-5p/PDK1 was predicted to be closely related to hepatocyte proliferation. We further demonstrated that miR-34b-5p could bind specifically to the 3'-untranslated region (3'-UTR) of PDK1 using the dual luciferase reporter assay. Ectopic overexpression of miR-34b-5p significantly reduced the mRNA and protein expression of PDK1, while it markedly inhibited the proliferation of mouse NCTC 1469 cells in vitro. In contrast, knocking down miR-34b-5p exhibited the inverse effects on PDK1 expression and hepatocyte proliferation. Through analyzing the ceRNA network during mouse liver regeneration, this study reveals that miR-34b-5p can inhibit hepatocyte proliferation through negatively regulating PDK1 and may be a potential pharmacological intervention target.


Assuntos
MicroRNAs , RNA Longo não Codificante , 1-Fosfatidilinositol 4-Quinase/genética , Regiões 3' não Traduzidas , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Hiperplasia , Regeneração Hepática/genética , Camundongos , MicroRNAs/metabolismo , Fosfatidilinositóis , Proteínas Quinases/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA-Seq
2.
Cancer Res ; 82(14): 2625-2639, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35657206

RESUMO

Melanomas frequently harbor activating NRAS mutations. However, limited advance has been made in developing targeted therapy options for patients with NRAS mutant melanoma. MEK inhibitors (MEKi) show modest efficacy in the clinic and their actions need to be optimized. In this study, we performed a genome-wide CRISPR-Cas9-based screen and demonstrated that loss of phosphoinositide-dependent kinase-1 (PDPK1) enhances the efficacy of MEKi. The synergistic effects of PDPK1 loss and MEKi was validated in NRAS mutant melanoma cell lines using pharmacologic and molecular approaches. Combined PDPK1 inhibitors (PDPK1i) with MEKi suppressed NRAS mutant xenograft growth and induced gasdermin E-associated pyroptosis. In an immune-competent allograft model, PDPK1i+MEKi increased the ratio of intratumoral CD8+ T cells, delayed tumor growth, and prolonged survival; the combination treatment was less effective against tumors in immune-deficient mice. These data suggest PDPK1i+MEKi as an efficient immunostimulatory strategy against NRAS mutant melanoma. SIGNIFICANCE: Targeting PDPK1 stimulates antitumor immunity and sensitizes NRAS mutant melanoma to MEK inhibition, providing rationale for the clinical development of a combinatorial approach for treating patients with melanoma.


Assuntos
GTP Fosfo-Hidrolases , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Melanoma , 1-Fosfatidilinositol 4-Quinase/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903667

RESUMO

KRAS is mutated in 90% of human pancreatic ductal adenocarcinomas (PDACs). To function, KRAS must localize to the plasma membrane (PM) via a C-terminal membrane anchor that specifically engages phosphatidylserine (PtdSer). This anchor-binding specificity renders KRAS-PM localization and signaling capacity critically dependent on PM PtdSer content. We now show that the PtdSer lipid transport proteins, ORP5 and ORP8, which are essential for maintaining PM PtdSer levels and hence KRAS PM localization, are required for KRAS oncogenesis. Knockdown of either protein, separately or simultaneously, abrogated growth of KRAS-mutant but not KRAS-wild-type pancreatic cancer cell xenografts. ORP5 or ORP8 knockout also abrogated tumor growth in an immune-competent orthotopic pancreatic cancer mouse model. Analysis of human datasets revealed that all components of this PtdSer transport mechanism, including the PM-localized EFR3A-PI4KIIIα complex that generates phosphatidylinositol-4-phosphate (PI4P), and endoplasmic reticulum (ER)-localized SAC1 phosphatase that hydrolyzes counter transported PI4P, are significantly up-regulated in pancreatic tumors compared to normal tissue. Taken together, these results support targeting PI4KIIIα in KRAS-mutant cancers to deplete the PM-to-ER PI4P gradient, reducing PM PtdSer content. We therefore repurposed the US Food and Drug Administration-approved hepatitis C antiviral agent, simeprevir, as a PI4KIIIα inhibitor In a PDAC setting. Simeprevir potently mislocalized KRAS from the PM, reduced the clonogenic potential of pancreatic cancer cell lines in vitro, and abrogated the growth of KRAS-dependent tumors in vivo with enhanced efficacy when combined with MAPK and PI3K inhibitors. We conclude that the cellular ER-to-PM PtdSer transport mechanism is essential for KRAS PM localization and oncogenesis and is accessible to therapeutic intervention.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Receptores de Esteroides/metabolismo , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Esteroides/genética , Simeprevir/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830359

RESUMO

Intracellular trafficking pathways control residency and bioactivity of integral membrane proteins at the cell surface. Upon internalisation, surface cargo proteins can be delivered back to the plasma membrane via endosomal recycling pathways. Recycling is thought to be controlled at the metabolic and transcriptional level, but such mechanisms are not fully understood. In yeast, recycling of surface proteins can be triggered by cargo deubiquitination and a series of molecular factors have been implicated in this trafficking. In this study, we follow up on the observation that many subunits of the Rpd3 lysine deacetylase complex are required for recycling. We validate ten Rpd3-complex subunits in recycling using two distinct assays and developed tools to quantify both. Fluorescently labelled Rpd3 localises to the nucleus and complements recycling defects, which we hypothesised were mediated by modulated expression of Rpd3 target gene(s). Bioinformatics implicated 32 candidates that function downstream of Rpd3, which were over-expressed and assessed for capacity to suppress recycling defects of rpd3∆ cells. This effort yielded three hits: Sit4, Dit1 and Ldb7, which were validated with a lipid dye recycling assay. Additionally, the essential phosphatidylinositol-4-kinase Pik1 was shown to have a role in recycling. We propose recycling is governed by Rpd3 at the transcriptional level via multiple downstream target genes.


Assuntos
Histona Desacetilases/genética , Hidroximetil e Formil Transferases/genética , Proteína Fosfatase 2/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , 1-Fosfatidilinositol 4-Quinase/genética , Membrana Celular/genética , Proteínas Cromossômicas não Histona/genética , Endossomos/genética , Regulação Fúngica da Expressão Gênica/genética , Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
Mol Plant ; 14(12): 2000-2014, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34339895

RESUMO

Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H+-ATPase and Na+/H+ antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H+-ATPase and Na+/H+ antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H+-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H+-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na+/H+ antiporter. PI prefers binding to the inactive form of PM H+-ATPase, while PI4P tends to bind to the active form of the Na+/H+ antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H+-ATPase activity and salt stress tolerance, while the pi4kß1 mutant, with reduced levels of PI4P, displayed reduced PM Na+/H+ antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions.


Assuntos
Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Homeostase , Transporte de Íons , Mutação , Tolerância ao Sal , Sódio/metabolismo
6.
Biomed Res Int ; 2021: 1807293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409100

RESUMO

Human Parainfluenza Virus Type 3 (HPIV3) is one of the main pathogens that cause acute lower respiratory tract infections in infants and young children. However, there are currently no effective antiviral drugs and vaccines. Herein, we found that a natural compound, curcumin, inhibits HPIV3 infection and has antiviral effects on entry and replication of the virus life cycle. Immunofluorescence and western blotting experiments revealed that curcumin disrupts F-actin and inhibits viral inclusion body (IB) formation, thus inhibiting virus replication. Curcumin can also downregulate cellular PI4KB and interrupt its colocalization in viral IBs. This study verified the antiviral ability of curcumin on HPIV3 infection and preliminarily elucidated its influence on viral replication, providing a theoretical basis for antiviral drug development of HPIV3 and other parainfluenza viruses.


Assuntos
Curcumina/farmacologia , Corpos de Inclusão Viral/metabolismo , Vírus da Parainfluenza 3 Humana/fisiologia , Infecções por Respirovirus/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Células A549 , Actinas/metabolismo , Animais , Cães , Regulação para Baixo , Redução da Medicação , Células HeLa , Humanos , Corpos de Inclusão Viral/efeitos dos fármacos , Corpos de Inclusão Viral/genética , Células Madin Darby de Rim Canino , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Infecções por Respirovirus/tratamento farmacológico , Infecções por Respirovirus/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
PLoS Genet ; 17(8): e1009727, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407079

RESUMO

Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71-Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/genética , 1-Fosfatidilinositol 4-Quinase/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Membranas/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Proteomics ; 21(5): e2000223, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33463038

RESUMO

Phosphatidylinositol-4-kinases ß1 and ß2 (PI4Kß1/PI4Kß2), which are responsible for phosphorylation of phosphatidylinositol to phosphatidylinositol-4-phosphate, have important roles in plant vesicular trafficking. Moreover, PI4Kß1/PI4Kß2 negatively regulates biosynthesis of phytohormone salicylic acid (SA), a key player in plant immune responses. The study focused on the effect of PI4Kß1/PI4Kß2 deficiency and SA level on the proteome of microsomal fraction. For that purpose we used four Arabidopsis thaliana genotypes: wild type; double mutant with impaired function of PI4Kß1/PI4Kß2 (pi4kß1/pi4kß2) exhibiting high SA level; sid2 mutant with impaired SA biosynthesis depending on the isochorismate synthase 1 and triple mutant sid2/pi4kß1/pi4kß2. We identified 1797 proteins whose levels were changed between genotypes. We showed that increased SA concentration affected the levels of 473 proteins. This includes typical SA pathway markers but also points to connections between SA pathway and clathrin-independent endocytosis (flotillins) and exocytosis/protein secretion (syntaxins, tetraspanin) to be investigated in future. In contrast to SA, the absence of PI4Kß1/PI4Kß2 itself affected only 27 proteins. Among them we identified CERK1, a receptor for chitin. Although PI4Kß1/PI4Kß2 deficiency itself did not have a substantial impact on the proteome of the microsomal fraction, our data clearly show that it enhances proteome changes when SA pathway is modulated in parallel.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatidilinositóis , Proteoma , Ácido Salicílico
9.
Virulence ; 12(1): 96-113, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315533

RESUMO

Aspergillus flavus (A. flavus) is one of the most important model environmental fungi which can produce a potent toxin and carcinogen known as aflatoxin. Aflatoxin contamination causes massive agricultural economic loss and a critical human health issue each year. Although a functional vacuole has been highlighted for its fundamental importance in fungal virulence, the molecular mechanisms of the vacuole in regulating the virulence of A. flavus remain largely unknown. Here, we identified a novel vacuole-related protein in A. flavus, the ortholog of phosphatidylinositol-3-phosphate-5-kinase (Fab1) in Saccharomyces cerevisiae. This kinase was located at the vacuolar membrane, and loss of fab1 function was found to affect the growth, conidia and sclerotial development, cellular acidification and metal ion homeostasis, aflatoxin production and pathogenicity of A. flavus. Further functional analysis revealed that Fab1 was required to maintain the vacuole size and cell morphology. Additional quantitative proteomic analysis suggested that Fab1 was likely to play an important role in maintaining vacuolar/cellular homeostasis, with vacuolar dysregulation upon fab1 deletion leading to impaired aflatoxin synthesis in this fungus. Together, these results provide insight into the molecular mechanisms by which this pathogen produces aflatoxin and mediates its pathogenicity, and may facilitate dissection of the vacuole-mediated regulatory network in A. flavus.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Aflatoxinas/genética , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Homeostase , Sementes/microbiologia , Zea mays/microbiologia
10.
J Genet Genomics ; 47(10): 627-636, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33358778

RESUMO

The primary cilium, an important microtubule-based organelle, protrudes from nearly all the vertebrate cells. The motility of cilia is necessary for various developmental and physiological processes. Phosphoinositides (PIs) and its metabolite, PtdIns(4,5)P2, have been revealed to contribute to cilia assembly and disassembly. As an important kinase of the PI pathway and signaling, phosphatidylinositol 4-kinase ß (PI4KB) is the one of the most extensively studied phosphatidylinositol 4-kinase isoform. However, its potential roles in organ development remain to be characterized. To investigate the developmental role of Pi4kb, especially its function on zebrafish ciliogenesis, we generated pi4kb deletion mutants using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technique. The homozygous pi4kb mutants exhibit an absence of primary cilia in the inner ear, neuromasts, and pronephric ducts accompanied by severe edema in the eyes and other organs. Moreover, smaller otic vesicle, malformed semicircular canals, and the insensitivity on sound stimulation were characteristics of pi4kb mutants. At the protein level, both in vivo and in vitro analyses revealed that synthesis of Pi4p was greatly reduced owing to the loss of Pi4kb. In addition, the expression of the Pi4kb-binding partner of neuronal calcium sensor-1, as well as the phosphorylation of phosphatidylinositol-4-phosphate downstream effecter of Akt, was significantly inhibited in pi4kb mutants. Taken together, our work uncovers a novel role of Pi4kb in zebrafish inner ear development and the functional formation of hearing ability by determining hair cell ciliogenesis.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Cílios/genética , Desenvolvimento Embrionário/genética , Proteínas de Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas/genética , Movimento Celular/genética , Cílios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Fosfatos de Fosfatidilinositol/genética , Deleção de Sequência/genética , Transdução de Sinais/genética , Peixe-Zebra/genética
11.
Fungal Genet Biol ; 144: 103443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32800918

RESUMO

Fusarium graminearum is the main pathogenic fungus causing Fusarium head blight (FHB), which is a wheat disease with a worldwide prevalence. In eukaryotes, phosphatidylinositol 4-phosphate (PI4P), which participates in many physiological processes, is located primarily in different organelles, including the trans-Golgi network (TGN), plasma membrane and endosomes. Type II phosphatidylinositol 4-kinases (PI4Ks) are involved in regulating the production of PI4P in yeast, plants and mammalian cells. However, the role of these proteins in phytopathogenic fungi is not well understood. In this study, we characterized the type II PI4K protein FgLsb6 in F. graminearum, a homolog of Lsb6 in Saccharomyces cerevisiae. Unlike Lsb6, FgLsb6 localizes to the vacuoles and endosomes. The ΔFglsb6 mutant displayed defects in vegetative growth, deoxynivalenol (DON) production and pathogenicity. Furthermore, the ΔFglsb6 deletion mutant also exhibited increased resistance to osmotic, oxidative and cell wall stresses. Further analyses of the ΔFglsb6 mutant showed that it was defective in the generation of PI4P on endosomes and endocytosis. Collectively, our data suggest that the decreased vegetative growth and pathogenicity of ΔFglsb6 was due to the conservative roles of FgLsb6 in the generation of PI4P on endosomes and endocytosis.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Fusarium/genética , Doenças das Plantas/genética , Virulência/genética , Parede Celular/microbiologia , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/genética , Fosfatidilinositóis/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Vacúolos/genética
12.
Biochim Biophys Acta Biomembr ; 1862(11): 183416, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726584

RESUMO

Morphologically, the lipophagy in yeast cell mimics microautophagy, which includes a direct amendment of the vacuolar membrane that engulfs lipid droplets (LDs). The molecular mechanism of the membrane modifications that elicits microautophagy still remains elusive. In this study, an analysis of membrane lipid distribution at a nanoscale level showed that PtdIns(4)P is localized in the cytoplasmic leaflet of microautophagic vesicles, which are derived when the vacuole's membrane domains engulfed LDs both in the stationary phase and in acute nitrogen starvation. Furthermore, the PtdIns(4)P-positive raft-like domains engulf LDs through a microautophagic mechanism. When single temperature-conditional mutants of STT4 or PIK1 PtdIns 4-kinases were used, in the vacuole of STT4 and PIK1 mutant cells, microautophagic vesicles drastically decreased at restrictive temperatures, and the labeling density of PtdIns(4)P on the microautophagic vesicles and the sizes of the mutants' microautophagic vesicles also decreased. These results suggest that both Stt4p and Pik1p have important roles in the microautophagy of the vacuole in the stationary phase and under nitrogen starvation conditions.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Autofagia , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/genética
13.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32303746

RESUMO

The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.


Assuntos
Proteínas de Membrana/genética , Fosfatidilserinas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , 1-Fosfatidilinositol 4-Quinase/genética , Transporte Biológico/genética , Metabolismo dos Lipídeos/genética , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269127

RESUMO

Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.


Assuntos
Interações Hospedeiro-Patógeno/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Replicação Viral/genética , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Células Vegetais/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esteróis/metabolismo , /metabolismo , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
15.
Science ; 367(6484): 1366-1371, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193326

RESUMO

Mitochondrial plasticity is a key regulator of cell fate decisions. Mitochondrial division involves Dynamin-related protein-1 (Drp1) oligomerization, which constricts membranes at endoplasmic reticulum (ER) contact sites. The mechanisms driving the final steps of mitochondrial division are still unclear. Here, we found that microdomains of phosphatidylinositol 4-phosphate [PI(4)P] on trans-Golgi network (TGN) vesicles were recruited to mitochondria-ER contact sites and could drive mitochondrial division downstream of Drp1. The loss of the small guanosine triphosphatase ADP-ribosylation factor 1 (Arf1) or its effector, phosphatidylinositol 4-kinase IIIß [PI(4)KIIIß], in different mammalian cell lines prevented PI(4)P generation and led to a hyperfused and branched mitochondrial network marked with extended mitochondrial constriction sites. Thus, recruitment of TGN-PI(4)P-containing vesicles at mitochondria-ER contact sites may trigger final events leading to mitochondrial scission.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Fosfatos de Fosfatidilinositol/metabolismo , Rede trans-Golgi/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Dinaminas/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Células HeLa , Humanos , Microdomínios da Membrana , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Interferência de RNA
16.
Front Biosci (Landmark Ed) ; 25(8): 1462-1487, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114441

RESUMO

Human kinases represent a large family of enzymes with their primary function being the phosphorylation of various biomolecules. Kinases along with G-Protein Coupled Receptors (GPCRs) represent wo of the most common protein targest in drug discovery. Kinases are classified by the substrate they phosphorylate namely, protein kinases, carbohydrate kinases and lipid kinases. These different classes have unique mechanism of action but show considerable overlap in their structural assembly and sequence of chemical modifications. Compounds can modulate kinadse activity by interacting with the enzyme's ATP binding site (orthostatic site) or the allosteric site. These modulators have been classified as Types I, II, III and IV depending on their mode of binding. Inclusion of atypical kinases and pseuokinases in the targetable kinome along with the recent approval of kinase-based therapeutics provides an impetus to the ever-growing field of kinase modulation. This review attempts to summarize the identification, historical stance, catalytic structure and subsequent development of kinases as significvant drug targets with an emphasis on their catalytic machinery and modulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Sítio Alostérico/genética , Sítios de Ligação/genética , Glucoquinase/genética , Glucoquinase/metabolismo , Humanos , Fosforilação , Proteínas Quinases/genética , Receptores Acoplados a Proteínas G/genética
17.
Cell Rep ; 29(8): 2229-2242.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747597

RESUMO

Many positive-strand RNA viruses remodel the endomembrane to form specialized replication organelles. However, knowledge regarding whether negative-strand RNA viruses take advantage of intracellular membranes for replication is limited. Here we show that a negative-strand RNA virus, human parainfluenza virus type 3 (HPIV3), remodels the endoplasmic reticulum (ER) membrane to form inclusion bodies (IBs), whereby the phosphoprotein (P) of HPIV3 recruits phosphatidylinositol 4-kinase beta (PI4KB) to IBs to generate PI4P, creating a PI4P-enriched microenvironment to promote HPIV3 replication. In addition, we find that human respiratory syncytial virus (HRSV) also takes advantage of the ER to form IBs and that these IBs are also enriched with PI4P. The nucleoprotein of HRSV recruits PI4KB to IBs. These results suggest that paramyxoviruses also exploit the host endomembrane to form IBs and that PI4KB is recruited by viral proteins to enrich IBs with PI4P to facilitate viral replication.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Retículo Endoplasmático/metabolismo , Corpos de Inclusão/metabolismo , Vírus da Parainfluenza 3 Humana/patogenicidade , 1-Fosfatidilinositol 4-Quinase/genética , Retículo Endoplasmático/genética , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão/genética , Membranas Intracelulares/metabolismo , Vírus da Parainfluenza 3 Humana/genética , Paramyxovirinae/genética , Paramyxovirinae/patogenicidade , Fosfoproteínas/metabolismo , Vírus de RNA/genética , Vírus de RNA/patogenicidade , Replicação Viral/genética , Replicação Viral/fisiologia
18.
Mol Plant Pathol ; 20(10): 1408-1424, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31475785

RESUMO

Geminiviruses are single-stranded DNA viruses that can cause significant losses in economically important crops. In recent years, the role of different kinases in geminivirus pathogenesis has been emphasized. Although geminiviruses use several host kinases, the role of phosphatidylinositol 4-kinase (PI4K) remains obscure. We isolated and characterized phosphatidylinositol 4-kinase type II from Nicotiana benthamiana (NbPI4KII) which interacts with the replication initiator protein (Rep) of a geminivirus, chilli leaf curl virus (ChiLCV). NbPI4KII-mGFP was localized into cytoplasm, nucleus or both. NbPI4KII-mGFP was also found to be associated with the cytoplasmic endomembrane systems in the presence of ChiLCV. Furthermore, we demonstrated that Rep protein directly interacts with NbPI4KII protein and influenced nuclear occurrence of NbPI4KII. The results obtained in the present study revealed that NbPI4KII is a functional protein kinase lacking lipid kinase activity. Downregulation of NbPI4KII expression negatively affects ChiLCV pathogenesis in N. benthamiana. In summary, NbPI4KII is a susceptible factor, which is required by ChiLCV for pathogenesis.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Geminiviridae/patogenicidade , /virologia , Proteínas de Plantas/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/virologia , DNA Helicases/genética , DNA Helicases/metabolismo , Geminiviridae/genética , Geminiviridae/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Plant Physiol ; 181(1): 112-126, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285293

RESUMO

Lateral roots (LRs) increase the contact area of the root with the rhizosphere and thereby improve water and nutrient uptake from the soil. LRs are generated either via a developmentally controlled mechanism or through induction by external stimuli, such as water and nutrient availability. Auxin regulates LR organogenesis via transcriptional activation by an auxin complex receptor. Endocytic trafficking to the vacuole positively regulates LR organogenesis independently of the auxin complex receptor in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that phosphatidylinositol 4-phosphate (PI4P) biosynthesis regulated by the phosphatidylinositol 4-kinases PI4KIIIß1 and PI4KIIIß2 is essential for the LR organogenesis driven by endocytic trafficking to the vacuole. Stimulation with Sortin2, a biomodulator that promotes protein targeting to the vacuole, altered PI4P abundance at both the plasma membrane and endosomal compartments, a process dependent on PI4K activity. These findings suggest that endocytic trafficking to the vacuole regulated by the enzymatic activities of PI4KIIIß1 and PI4KIIIß2 participates in a mechanism independent of the auxin complex receptor that regulates LR organogenesis in Arabidopsis. Surprisingly, loss-of-function of PI4KIIIß1 and PI4KIIIß2 induced both LR primordium formation and endocytic trafficking toward the vacuole. This LR primordium induction was alleviated by exogenous PI4P, suggesting that PI4KIIIß1 and PI4KIIIß2 activity constitutively negatively regulates LR primordium formation. Overall, this research demonstrates a dual role of PI4KIIIß1 and PI4KIIIß2 in LR primordium formation in Arabidopsis.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácidos Indolacéticos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Endossomos/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transporte Proteico , Transdução de Sinais , Vacúolos/metabolismo
20.
Microbiol Immunol ; 63(7): 285-288, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31166044

RESUMO

Phosphatidylinositol-4 kinase III ß (PI4KB) is a host factor that is required for enterovirus (EV) replication. In this study, the importance of host proteins that interact with PI4KB in EV replication was analyzed by trans complementation with PI4KB mutants in a PI4KB-knockout cell line. Ectopically expressed PI4KB mutants, which lack binding regions for ACBD3, RAB11, and 14-3-3 proteins, rescued replication of poliovirus and enterovirus 71. These findings suggest that interaction of PI4KB with these host proteins is not essential for EV replication once PI4KB has been expressed and that PI4KB is functionally independent from these host proteins regarding EV replication.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Enterovirus/metabolismo , Domínios e Motivos de Interação entre Proteínas , Replicação Viral/fisiologia , 1-Fosfatidilinositol 4-Quinase/genética , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Linhagem Celular , Infecções por Enterovirus , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poliovirus/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...